In vivo respiratory metabolism of illuminated leaves.
نویسندگان
چکیده
Day respiration of illuminated C(3) leaves is not well understood and particularly, the metabolic origin of the day respiratory CO(2) production is poorly known. This issue was addressed in leaves of French bean (Phaseolus vulgaris) using (12)C/(13)C stable isotope techniques on illuminated leaves fed with (13)C-enriched glucose or pyruvate. The (13)CO(2) production in light was measured using the deviation of the photosynthetic carbon isotope discrimination induced by the decarboxylation of the (13)C-enriched compounds. Using different positional (13)C-enrichments, it is shown that the Krebs cycle is reduced by 95% in the light and that the pyruvate dehydrogenase reaction is much less reduced, by 27% or less. Glucose molecules are scarcely metabolized to liberate CO(2) in the light, simply suggesting that they can rarely enter glycolysis. Nuclear magnetic resonance analysis confirmed this view; when leaves are fed with (13)C-glucose, leaf sucrose and glucose represent nearly 90% of the leaf (13)C content, demonstrating that glucose is mainly directed to sucrose synthesis. Taken together, these data indicate that several metabolic down-regulations (glycolysis, Krebs cycle) accompany the light/dark transition and emphasize the decrease of the Krebs cycle decarboxylations as a metabolic basis of the light-dependent inhibition of mitochondrial respiration.
منابع مشابه
Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions.
Day respiration is the process by which nonphotorespiratory CO2 is produced by illuminated leaves. The biological function of day respiratory metabolism is a major conundrum of plant photosynthesis research: because the rate of CO2 evolution is partly inhibited in the light, it is viewed as either detrimental to plant carbon balance or necessary for photosynthesis operation (e.g., in providing ...
متن کاملDifferential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves.
Plant mitochondria have multiple energy-dissipating components in the respiratory chain. It is known that these components are induced under several stress conditions. Here we examined whether the gene expression pattern and its regulatory mechanism under high light (HL) conditions are different among the respiratory components in Arabidopsis leaves. Alternative oxidase (AOX) gene expression (A...
متن کاملTHE EFFECT OF SALINITY STRESS ON PROLINE METABOLISM IN TWO WHEAT (TRITICUM AESTIVUM) CULTIVARS
The effect of various NaCl treatments (0, 50, 100, 200 and 300 mM) at different growth and development stages (tillering, boot swelling, flowering and polination) of two wheat cultivars (Ghods : salt-sensitive; Boolani : salt-resistant) on proline concentration and the kinetic activity of proline dehydrogenase was studied under greenhouse conditions. Generally, in response to salinity treatment...
متن کاملEvidence for in vivo Light-induced Synthesis of Ribulose-1,5-diP Carboxylase and Phosphoribulokinase in Greening Barley Leaves.
WHEN ACTINOMYCIN D, PUROMYCIN, STREPTOMYCIN, CHLORAMPHENICOL, AND CYCLOHEXIMIDE, KNOWN INHIBITORS OF PROTEIN SYNTHESIS, WERE APPLIED TO LEAVES OF INTACT SEEDLINGS OR DETACHED LEAVES OF BARLEY PRIOR TO THEIR GREENING, THE SAME GENERAL RESPONSE RESULTED: the light-induced increase in activity of ribulose 1,5-diphosphate carboxylase was prevented while that of phosphoribulokinase was only partiall...
متن کاملIncrease in the quantum yield of photoinhibition contributes to copper toxicity in vivo
The effect of copper on photoinhibition of photosystem II in vivo was studied in bean (Phaseolus vulgaris L. cv Dufrix). The plants were grown hydroponically in the presence of various concentrations of Cu2+ ranging from the optimum 0.3 &mgr;m (control) to 15 &mgr;m. The copper concentration of leaves varied according to the nutrient medium from a control value of 13 mg kg-1 dry weight to 76 mg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 138 3 شماره
صفحات -
تاریخ انتشار 2005